
Communication Avoiding 2D Stencil
Implementations over PaRSEC Task-Based Runtime

Yu Pei∗, Qinglei Cao∗, George Bosilca∗, Piotr Luszczek∗, Victor Eijkhout†, and Jack Dongarra∗
∗Innovative Computing Laboratory, University of Tennessee, Knoxville, U.S.A.

†Texas Advanced Computing Center, University of Texas, Austin, U.S.A

Abstract—Stencil computation or general sparse matrix-vector
product (SpMV) are key components in many algorithms like
geometric multigrid or Krylov solvers. But their low arithmetic
intensity means that memory bandwidth and network latency will
be the performance limiting factors. The current architectural
trend favors computations over bandwidth, worsening the already
unfavorable imbalance. Previous work approached stencil kernel
optimization either by improving memory bandwidth usage or by
providing a Communication Avoiding (CA) scheme to minimize
network latency in repeated sparse vector multiplication by
replicating remote work in order to delay communications on
the critical path.

Focusing on minimizing communication bottleneck in dis-
tributed stencil computation, in this study we combine a CA
scheme with the computation and communication overlapping
that is inherent in a dataflow task-based runtime system such
as PaRSEC to demonstrate their combined benefits. We imple-
mented the 2D five point stencil (Jacobi iteration) in PETSc, and
over PaRSEC in two flavors, full communications (base-PaRSEC)
and CA-PaRSEC which operate directly on a 2D compute grid.
Our results running on two clusters, NaCL and Stampede2
indicate that we can achieve 2X speedup over the standard SpMV
solution implemented in PETSc, and in certain cases when kernel
execution is not dominating the execution time, the CA-PaRSEC
version achieved up to 57% and 33% speedup over base-PaRSEC
implementation on NaCL and Stampede2 respectively.

Index Terms—2D stencil; communication avoiding; parallel
programming models

I. INTRODUCTION

Stencil computations are a common operator in a variety of

scientific and engineering simulations based on partial differ-

ential equations (PDE), and they constitute a key component of

many canonical algorithms from stationary iterative methods

involving sparse linear algebra operations, for example Jacobi

iteration [1], as well as non-stationary and projection methods

employing geometric multigrid [2], [3] and Krylov solvers [4,

pp. 241-313]. They are routinely used to solve problems that

arise from the discretization of PDE [5]. Stencil codes can be

characterized as having high regularity in terms of the data

structures and the data dependency pattern. However, they

also exhibit low arithmetic intensity and, as a consequence,

the available memory bandwidth required for data movement

is the limiting factor to their performance. To exacerbate

these issues, the recent trends in the hardware architecture

design have been skewed towards ever-increasing number of

cores, widening data parallelism, heterogeneous accelerators,

and a decreasing amount of per-core memory bandwidth [6].

The prior work on optimizing the stencil computations has

mostly focused on techniques to improve the kernel perfor-

mance within a particular domain such as cache oblivious

algorithms, time skewing, wave-front optimizations, and over-

lapped tiling [7]. On modern systems, these algorithmic classes

must be recast to overcome the geometrically growing gap

between processor speed and memory/network parameters, in

particular, CPU/GPU speeds have been improving at 59% per

year while the main memory bandwidth at only 23%, and the

main memory latency decreased at a mere 5.5% [8]. Given

the widening gap between computation speed and network

bandwidth, a systematic study of performance of stencils on

the distributed memory machines is still relevant. Especially

the optimization of communication is lacking.

In the recent years, a number of runtime systems and

new programming models have been developed to facilitate

application development by separating the domain science

and the tuning of the performance, leveraging the respective

strengths of domain scientist and runtimes. Some examples

include: Legion [9], UPC++[10], StarPU [11], PaRSEC [12],

and Charm++ [13]. In essence, the runtime system developers

can optimize performance over the massively parallel and

heterogeneous computing system, while the domain scientists

express the algorithms as a Directly Acyclic Graph (DAG)

of tasks. The hope is that the runtime system will be able

to schedule the tasks on available resources, manage data

transfers and be able to overlap the two efficiently.

In this study we adopted PaRSEC to abstract away the

MPI communication across nodes, and experimented with

communication-avoiding (CA) techniques to further reduce the

communication overhead that is the limiting factor in stencil

computation. We use the 2D five point stencil as the test

case, and compared the performance of three implementations:

PETSc, base-PaRSEC and CA-PaRSEC. We investigated ex-

tensively the interplay between memory bandwidth, compu-

tation speed and network latency/bandwidth on performance.

We demonstrated that under some reasonable assumptions on

workload and system configurations, we can achieve up to

57% and 33% improvements on the two machines we tested on

when we add communication avoiding scheme into PaRSEC

runtime.

In section II we cover the related works on stencil/sparse

vector multiply and on runtime systems. Then in section III

we briefly described the background of the problem, and the

background on PaRSEC runtime and communication avoiding

technique. In section IV we introduce the three implementa-

721

2020 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

978-1-7281-7445-7/20/$31.00 ©2020 IEEE
DOI 10.1109/IPDPSW50202.2020.00127
Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 14,2023 at 15:31:36 UTC from IEEE Xplore. Restrictions apply.

tions we used for evaluation. Sections V and VI describe our

experiment setup and performance results and we conclude in

section VII.

II. RELATED WORK

Stencil research has mostly focused on optimizing the

kernels [14] or domain specific systems that can generate

efficient kernels automatically [6] and generating code that

can utilize GPUs efficiently [15]. In [7] the authors not only

optimized the kernel, but also implemented the communication

avoiding technique directly within their compiler framework.

Here instead of combining everything within one compiler sys-

tem, we investigate delegating the internode communication to

runtime system instead to combine communication hiding and

communication avoiding at the runtime system level. Commu-

nication avoiding method (or s-steps method) itself is an old

concept as stated in [16] and many Krylov solvers have been

build with this idea [17]. The numerical properties of such

approaches are out of the scope of this paper and we mainly

focus on the feasibility and benefits of having CA ability

implemented within a runtime infrastructure. Applications of

communication avoiding technique to numerical linear algebra

algorithms [18] [19] have also been studied and performance

improvement demonstrated. In particular authors in [19] also

studied the interaction between communication computation

overlap with communication avoiding technique programmed

with Unified Parallel C (UPC), a partitioned global address

space (PGAS) model.

In recent years, the increase complexity of programming

parallel and distributed machines has sparked the develop-

ment of many programming models and runtime systems

that can utilize the machine more efficiently. Among them

PaRSEC [12], Legion [9], StarPU [11] and Charm++ [13]

are actively being developed. In a task-based programming

environment, a vast amount of parallelism is exposed through

expressing the algorithm as a set of successive, fine-grain

tasks. The runtime system is then responsible for scheduling

these tasks while satisfying the data dependencies between

them. Similar to the compiler approach, it also allows the

decoupling of algorithm specification and the underlying ma-

chine optimization by the runtime system.

In this study, we adopt the runtime approach and study

extensively the benefits of runtime to provide better commu-

nication computation overlap, and the opportunity for further

improvement via communication avoiding scheme for stencil

computation and for SpMV in general [20] [21]. To the best of

our knowledge this is the first time the combined approach is

being done on a distributed system. Our goal is to demonstrate

the feasibility of such a software infrastructure for a broad

range of numerical algorithms.

III. BACKGROUND

A. Stencil Problem Description

Scientific simulations in diverse areas such as diffusion,

electromagnetics, and fluid dynamics use PDE solvers as the

main computational component. These applications commonly

Fig. 1. Common illustration of the Jacobi update scheme [22].

employ discretization schemes such as finite-difference or

finite-element techniques. During the solve, they sweep over

a spatial grid, performing computations involving nearest-

neighbor grid points. Such compute patterns are called stencils.

In these operations, each of the regular grid points is updated

with weighted contributions from a small subset of neighbor-

ing points in both time and space. The weights represent the

coefficients of the PDE discretization for that data element.

Depending on the solver, these coefficients may be the same

across the entire grid or differ at each grid point. The former

is a constant-coefficient stencil while the latter – a variable-

coefficient stencil. The range of solvers that often employ

stencil operations includes simple Jacobi iterations [1] to

complex multigrid [3] and adaptive mesh refinement (AMR)

methods [22].

Stencils can operate on different dimensions, having differ-

ent iterations and coefficient types. In this work we use Jacobi

iteration to solve the Laplace’s equation, which means that we

will have one read grid X‘−1 and one write grid X‘, and the

update will be in the form of:

x ‘i ;j =w0;0 · x ‘−1
i ;j

+w0;−1 · x ‘−1
i ;j−1 + w0;1 · x ‘−1

i ;j+1

+w−1;0 · x ‘−1
i−1;j + w1;0 · x ‘−1

i+1;j

(1)

We used the more general form of weights which will give

us the consistent FLOP/s count of 9n2 for all implementations

(5 multiplications and 4 additions). A diagram of the Jacobi

iteration scheme is shown in Figure 1.

B. Distributed Memory Dataflow with PaRSEC

PaRSEC [12] is a task-based runtime for distributed hetero-

geneous architectures and is capable of dynamically unfolding

a description of a graph of tasks on a set of resources and

satisfying all data dependencies by efficiently shepherding data

between memory spaces (between nodes but also between

different memories on different devices) and scheduling tasks

across heterogeneous resources.

Domain-specific languages (DSLs) in PaRSEC help domain

experts to focus only on their domain science by masking

required computer science knowledge. The Parameterized Task

Graph (PTG) [23] DSL uses a concise, parameterized, task-

graph description known as Job Data Flow (JDF) to represent

the dependencies between tasks. To enhance the productivity

of the application developers, PaRSEC implicitly infers all

722

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 14,2023 at 15:31:36 UTC from IEEE Xplore. Restrictions apply.

communications from the expression of the tasks, supporting

one-to-many and many-to-many types of communications.

From a performance standpoint, algorithms described in PTG

have been shown capable of delivering a significant percentage

of the hardware peak performance on many hybrid distributed

machines. Other DSLs, such as Dynamic Task Discovery

(DTD) [24], are less science-domain oriented and provide

alternative programming models to satisfy more generic needs

by delivering an API that allows for sequential task insertion

into the runtime.

C. Communication Avoiding Algorithms

With the increasingly widening gap between computation

and communication, modern algorithms should try to minimize

communication both within a local memory hierarchy and

between processors. And this is especially true for SpMV,

stencil operations that are memory system and network bound.

The key idea in Demmel et al [16] is to perform some

redundant work but can relief the bottleneck on communi-

cation latency. Two new algorithms were introduced, PA1

(depicted in figure 2) and PA2 as they described in the paper,

where PA1 is the naive version while PA2 will minimize the

redundant work but might limit the amount of overlap between

computation and communication. Our implementation follows

the PA1 algorithm.

As an example shown in figure 2, ghost region of 3-layers

are used to store remote data. This allows the local grid to

perform Jacobi updates upto three time steps for the local

data (white points) with replication of work from remote

points (outer red points used to update inner red points).

By performing redundant work, we reduce the frequency of

communication thus the cost of network latency.

PaRSEC runtime system by design allows computation and

communication overlap, by incorporating the communication

avoiding scheme into the task-based implementation of sten-

cil operations, we believe such an infrastructure can further

improve its performance.

IV. IMPLEMENTATION

A. Standard Implementation with PETSc

PETSc is a suite of data structures and routines for the scal-

able (parallel) solution of scientific applications modeled by

partial differential equations [26], [27], [28]. It provides many

of the mechanisms needed within parallel application codes,

such as simple parallel matrix and vector assembly routines

that allow the overlap of communication and computation. In

addition, PETSc includes support for parallel distributed arrays

useful for finite difference methods.

Implementing Jacobi iteration in PETSc, we simply expand

the 2D compute grid points into 1D solution vector, and the

corresponding 5 points stencil update expresses as a sparse

matrix. PETSc by default will partition the sparse matrix by

rows with each process having a block of matrix rows. To

perform the updates, we have two solution vectors that will

swap within the for loop up to a specified iteration count.

Fig. 2. The 2D five-point stencil operation using PA1 algorithm on a 10-by-
10 grid, having a step size of 3 as illustrated in the original report [25]. For a
single processor with the projected view. Red asterisks indicate remote values
that need to be communicated.

Since PETSc is a mature and widely used package, the result

will serve as the baseline for our PaRSEC performance.

B. Task-based Implementation in PaRSEC

Task-based runtime system offers a unified view of the

underlying hardware and let the developer focus on the algo-

rithm, described as Directed Acyclic Graph (DAG) of tasks.

The runtime system will then manage all data transfers and

synchronizations between computing devices and the schedul-

ing of tasks among available computing resources. Hence these

frameworks allow for the separation of major concerns in

Fig. 3. Diagram of the base version PaRSEC implementation. Three possible
task locations and their data dependencies are shown. Black line indicates
within node data copy while red line indicates remote communication.

723

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 14,2023 at 15:31:36 UTC from IEEE Xplore. Restrictions apply.

HPC: design of the algorithm, creating a data distribution and

developing computational kernels [29].

1) Base PaRSEC Version: The first version follows the

formulation of the Jacobi iteration, with data partitioned into

2D blocks over the 2D computation grids. Then the data on

each node are divided into tiles that each task will operate

on. By providing this extra level of decomposition, only the

tasks that have neighbor tiles on a remote node will incur

communication, while the inner tasks can still be processed

with the remaining workers. Each tile will have an extra ghost

region used for data exchange between tasks.

Figure 3 provides the diagram that depicts the implemen-

tation of the base stencil. The dashed line outlines the node

boundary, the 2D blocked data distribution ensures that the

surface to volume ratio is minimized and we have minimal

remote communications. Each tile will have the same size and

also each will have an extra ghost region for copying neighbor

tiles’ value. Since we are doing a 5-point stencil, the figure

indicates that we will have three possible dependencies cases,

for the interior tasks, all the neighbors are local to the task

and we can simply copy the memory into the ghost region.

For the tiles on the boundaries or corners, one or two remote

data transfers will be needed. The computation kernel itself

is very straightforward as we simply loop over the elements

within a tile and apply the updates.

2) Communication Avoiding PaRSEC Version: The sec-

ond version we adopted the communication avoiding scheme

where we trade more computation for less frequent commu-

nication. Figure 4 has the overall structure very similar to

the base version, and the interior tasks have the same task

dependency as in the base version. But for boundary tiles, in

addition to the four neighbors, we need to buffer additional

data from the four corner neighbors due to the additional

Fig. 4. Diagram of the communication avoiding version PaRSEC imple-
mentation. Three possible task locations and their data dependencies are
shown. Black line indicates within node data copy while red line indicates
remote communication. The boundary tiles will have a bigger ghost region to
accommodate the extra layers of remote data.

steps of remote computation that we need to replicate locally.

Since we still don’t have the support at the runtime level,

we implemented the logic directly as a proof of concept and

it is a problem specific solution. Conditions are provided to

test whether the task is operating on a boundary tile, and

whether we need to communicate at this iteration. And we

will have the corresponding logic in the body of the task to

decide on the data we need to copy in and out, and which

kernel we should call. Similar to the base version, the tiles

that have all its neighbors being local to the node will have

one layer ghost region for data exchange since they don’t need

remote communication. But the boundary tiles will have ghost

region of steps-layers as specified for the extra amount of

data exchanged, as a result, this version will use slightly more

memory.

V. EXPERIMENT SETUP AND EVALUATION

To evaluate the benefits of implementing stencil operations

with a runtime system and additionally the benefits of in-

corporating communication avoiding scheme, we consider the

following properties of the problem and the characteristics of

the machines:

1) Number of arithmetic operations and memory accesses

per task;

2) The maximum achievable network bandwidth of the

cluster and the memory bandwidth of a compute node;

3) Number of floating-point numbers communicated per

processor, and the number of messages sent per pro-

cessor.

Since we formulate the problem in the more generic version

which performs 9 floating point operations per update and need

to transfer 16 to 24 Bytes (read and write of double floating

point numbers) of data depending on the size of tiles, we

will use the range of 0.37 to 0.56 as our arithmetic intensity.

To measure the peak network bandwidth performance, we

used the NetPIPE benchmark [30] and for memory bandwidth

performance, we used the STREAM benchmark [31].

As mentioned here in before, there are three versions of

implementation, one in PETSc and two in PaRSEC, with

normal communication pattern and CA scheme respectively.

We first compare the strong scaling performance of the three

versions using PETSc as the baseline in order to have a better

understanding of PaRSEC versions’ performance. Then we

move on to adjust the step sizes and tune the execution time

of the kernel (simulate memory bandwidth utilization rate)

to investigate the interplay between memory bandwidth and

network communication on the overall performance. As the

computer architectures continue to evolve, our result should

provide a guidance for future performance improvements that

can be expected on stencil operations.

VI. EXPERIMENT RESULTS

The experiments are run on two systems. First is an in-

house cluster called NaCL that has the total of 64 nodes, each

with two Intel Xeon X5660 (Westmere) CPUs, with a total

of 12 cores spread across two sockets and 23 GB of memory

724

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 14,2023 at 15:31:36 UTC from IEEE Xplore. Restrictions apply.

TABLE I
STREAM BENCHMARK RESULTS (MB/S) FOR NACL AND STAMPEDE2.

System Scale COPY SCALE ADD TRIAD
NaCL 1-core 9814.2 10080.3 10289.3 10271.6
NaCL 1-node 40091.3 26335.8 28992.0 28547.2

Stampede2 1-core 10632.6 10772.0 13427.1 13440.0
Stampede2 1-node 176701.1 178718.7 192560.3 193216.3

per node. The network switch and network cards are Infiniband

QDR with a peak network rate of 32 Gb/s. The second system

is Stampede2 system located at TACC: each node is equipped

with two Intel Xeon Platinum 8160 (Skylake) CPUs with a

total of 48 cores across two sockets, and 192GB of on-node

memory. The interconnect is a 100 Gb/sec Intel Omni-Path

network.

We used PaRSEC master branch from commit faf0872052,

and PETSc release version 3.12. On NaCL, we compiled with

gcc 8.3.0 and using Intel MPI 2019.3.199. On Stampede2, we

compiled with Intel compiler 18.0.2 and MVAPICH2 version

2.3.1. PETSc was compiled with all the optimization enabled

and using 64-bit integers. PETSc runs had one MPI process

per core. For PaRSEC runs, we configured to have one process

per node, with one thread dedicated for communication while

the remaining ones for computation. The nodes during runs

were arranged into square compute grid and the data tiles

were allocated in a 2D block fashion to exploit the surface-

to-volume ratio effect.

A. Network and Memory bandwidth Benchmark

STREAM benchmark is run on both systems utilizing all the

cores on a compute node since, as the results show, a single

core cannot saturate the memory interface. The results are

shown in Table I. The different STREAM modes vary in their

arithmetic intensity: bytes transferred per FLOP computed. For

simplicity, in the following we use the results from COPY

operation as our achieved memory bandwidth.

The achieved bandwidth NaCL and Stampede2 were 39.1

GB/s and 172.5 GB/s, respectively. Our estimated arithmetic

intensity is between 0.37 to 0.56 depending on data availability

in cache. We expect the effective peak performance between

14.5 to 21.9 GFLOP/s and 63.8 to 96.6 GFLOP/s for our

memory-bound stencil kernels under the assumptions of the

roofline model [32].

We test the network interconnect on both systems with the

NetPIPE benchmark and obtain the following performance

results (also plotted in Figure 5). The effective peak network

bandwidth on NaCL is about 27 Gb/s while on Stampede2

we can achieve up to 86 Gb/s. Given the size of our stencil

tiles, we will likely not be able to reach that peak bandwidth

shown in Figure 5. The latency of the network is around 1

microseconds.

B. Tuning of Tile Size for PaRSEC Performance

Next, we measure the actual performance results of the base

implementation on top of PaRSEC that runs on a single node

(no network communication) with different tile sizes across all

available cores. The results allow us to select a reasonable tile

size for local computation. They also tell us the gap between

the performance of the native kernel and the peak memory

bandwidth performance to provide us with a reference point

for distributed runs.

We can see in Figure 6 there is a certain range of tile sizes

that allows us to obtain reasonable performance levels. For

the NaCL system, the tile sizes of 200 to 300 will result in

11 GFLOP/s while on Stampede2 the tile sizes 400 to 2000

will yield close to 43.5 GFLOP/s. Given the fact that we did

not optimize the kernel, the obtained result is acceptable for

the circumstances but is still not close to the peak memory

bandwidth level indicated in the previous section. Therefore,

in the following experiments, we will run PaRSEC versions

with the tile sizes in the optimal range obtained from the local-

only runs.

C. Comparing Strong Scaling Performance

Figure 7 shows the strong scaling speed up of the three

implementations when using optimal single node performance

as baseline. We can see that all three maintain good scal-

ability levels, and PaRSEC versions can achieve twice the

performance of PETSc. This performance advantage can be

partly explained by the SpMV formulation used by PETSc,

since instead of having the weight matrix be represented with

only 5 numbers, the update will involve both sparse matrix

indices and the corresponding values. This, at the very least,

doubles the number of memory loads (64-bit integers) that are

needed for the same amount of floating point operations (64-

bit floating-point.) Finally, we notice that the two PaRSEC

versions are almost indistinguishable from each other, indi-

cating that the communication avoiding approach is not very

helpful for 2D 5-point stencils on the tested machines as long

as the kernel is bound by the local memory bandwidth instead

of the network bandwidth.

0

25

50

75

256B 1KB 16KB 256KB 1MB
Message Size

%
 o

f T
he

or
et

ic
al

 P
ea

k

NaCL Stampede2

Fig. 5. Network Performance from NetPIPE on NaCL and Stampede2 with
theoretical peak of 32Gb/s and 100 Gb/s, respectively.

725

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 14,2023 at 15:31:36 UTC from IEEE Xplore. Restrictions apply.

NaCLNaCLNaCLNaCLNaCLNaCL
7

8

9

10

11

100 200 300 400 500

G
F

LO
P

/s

Stampede2Stampede2Stampede2Stampede2Stampede2Stampede2Stampede240

42

44

1000 2000 3000
Tile Size

G
F

LO
P

/s

Fig. 6. Shared memory PaRSEC base version performance for a given tile
size, top) NaCL with problem size 20K, bottom) Stampede2 with problem
size 27K.

NaCL

4
8

12
16
20

32

40

4 16 64

S
pe

ed
U

p

Stampede2

4
8

12
16
20

32

40

50

4 16 64
Nodes

S
pe

ed
U

p

Base CA PETSc

Fig. 7. Strong scaling speed up over single node baseline PaRSEC. top)
NaCL result with problem size 23k, tile size 288; bottom) Stampede2 result
with problem size 55k, tile size 864, running for 100 iterations. Steps size of
15 is used for CA version.

D. Tuning of Kernel Time and Performance Impact of Com-
munication Avoiding Scheme

To further investigate the potential benefits of communi-

cation avoiding schemes on a distributed problem, we test

in the case where the memory system is much faster or

our computation kernel has been optimized to utilized the

memory bandwidth better (a local communication avoiding

scheme that reduces slow memory accesses for example).

To simulate this, we set a ratio parameter, so that only

(ratio × mb) × (ratio × nb) portion of the tile will get

updated, which effectively reduce the memory access thus

4 16 64

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

0

250

500

750

1000

G
F

LO
P

/s

4 16 64

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

0

2500

5000

7500

10000

Kernel Adjustment Ratio

G
F

LO
P

/s

base CA

Fig. 8. Tuned kernel performance top) NaCL result with problem size 23k,
tile size 288; bottom) Stampede2 result with problem size 55k, tile size 864,
running for 100 iterations. Steps size of 15 is used for CA version. Running
on 4, 16 and 64 nodes with squared compute grid. The ratio indicates the
ratio of mb and nb of tile being operated on, namely ratio2 of the original
number of points in a tile. Black lines indicate the base PaRSEC with original
kernels’ result.

speedup the kernel execution. mb and nb are the rows and

columns number of a tile respectively. Figure 8 shows that

in such case, communication avoiding can provide a decent

amount of improvements, for example the NaCL 16 nodes case

we can see a 57% improvement if the kernel time is small.

While on 16 Stampede2 nodes, a moderate 18% improvement

can be observed in that case. The fast kernel times we assume

here is quite realistic as well. Based on STREAM memory

bandwidth test result, 0.6 ratio kernel performance is similar to

reaching around 80% of STREAM bound. According to recent

study [14], it is an efficiency level achieved with optimized

kernel.

The step size affects how often the boundary tiles will

communicate with each other, the size of the message and

the amount of available tasks can be enabled in this interval.

Although in our implementation, it will have no impact on the

726

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 14,2023 at 15:31:36 UTC from IEEE Xplore. Restrictions apply.

4 16 64

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

0

250

500

750

1000

G
F

LO
P

/s

4 16 64

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

0

2500

5000

7500

10000

Kernel Adjustment Ratio

G
F

LO
P

/s

5 15 25 40

Fig. 9. Tuned step size performance top) NaCL results with problem size
23k, tile size 288; bottom) Stampede2 results with problem size 55k, tile size
864, running for 100 iterations. Step sizes of 5, 15, 25 and 40 are used

boundary tasks’ execution time since we simulates the kernel

time without the extra computation. The interplay between

step size and kernel execution time is complicated, but the

optimal step size can be searched via experiment runs. Figure 9

indicates that if communication avoiding scheme can improve

performance over the base version, the step size needs to be

tuned to get the best possible speedup.

E. PaRSEC Profiling of the Two Versions

To validate that the communication avoiding versions’ in-

deed reduces the network latency thus reducing the cores

idling time, we used PaRSEC’s profiling system to record the

execution trace of the tasks to generate Figure 10. The result

from figure 8 shows that for tuned ratio of 0.4 running on 16

nodes on NaCL, we get a 14% performance improvement.

From the execution trace we can see that indeed with the

help of the CA approach, more tasks can get executed while

network messages are exchanged and we generally have higher

CPU occupancy. And the faster execution is achieved despite

the fact that the base version has median kernel time of 136

milliseconds while CA version has median kernel time of 153

milliseconds due to the extra copies in the body.

0

1

2

3

4

5

6

7

8

9

10

0 250 500 750 1000

0

1

2

3

4

5

6

7

8

9

10

0 250 500 750 1000
Time (ms)

boundary 0 1

Fig. 10. One node’s profiling result, running on NaCL with 16 nodes, tuned
ratio of 0.4, 11 computation threads on a node. top) Base PaRSEC bottom)
CA PaRSEC. Boundary indicates the tiles that need to exchange data with
remote nodes.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we described, implemented, and analyzed

a 2D stencil and its communication-avoiding (CA) variant

on top of the PaRSEC runtime system. In particular, we

proposed three implementations of a 5-point stencil as our

test cases. We showed performance results on two distinct

systems: NaCL and Stampede2; and compared three versions:

PETSc, base PaRSEC and CA PaRSEC. The approaches

based on a tasking runtime show good performance results,

with minimal distinction between the two approaches in all

compute-intensive scenarios. By artificially reducing the kernel

execution time, we highlight the case where the CA variant on

top of PaRSEC is able to outperform the others in the strong

scaling regime with up to 57% and 33% improvements on

both the NaCL and Stampede2 systems.

727

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 14,2023 at 15:31:36 UTC from IEEE Xplore. Restrictions apply.

On the current state-of-the-art high performance computing

system such as Department of Energy’s Summit at Oak Ridge

National Laboratory, each node has 6 GPUs and 900 GB/s

memory bandwidth per GPU and showed a network latency

of about 1 microsecond [33]. Exascale systems are expected

to be delivered over the next few years, and some information

about their architecture has been made public. The memory

bandwidth is expected to have around 50% improvement,

but the improvement of network latency will remain modest

– a well established trend [8]. Thus, if the workload on

each node can efficiently utilize the full memory bandwidth

then it would become, in all likelihood, network-bound and

the implementation variant based on communication-avoiding

approach shows a distinct advantage. However, increasing the

arithmetic intensity of the algorithms, or increasing workload

on each node could also provide effective ways to mitigate the

network inefficiencies.

Another way to look at the benefits of the communication

avoiding approach is how it aggregates the data across several

iteration steps. This reduces the communication frequency

to counteract the latency overhead and thus transforming a

latency-bound algorithm into a bandwidth-bound one. This

also allows us to more efficiently use the network due to

communicating larger messages that allow increased band-

width efficiency from 20% percent to 70% of peak network

bandwidth as shown in the NetPIPE results in Figure 5. By

performing redundant computations, we delayed the network

latency penalty by strong-scaling to larger node counts.

As a potential future work, we plan to investigate the pos-

sibility of providing a more generic communication avoiding

framework that would be built directly into the runtime system.

This approach will include automatic data replication across

the stencil grid neighbors, i.e., the nodes that share a frontier

region. Under such a design, the generation and the scheduling

of the redundant tasks become transparent to the users and

thus make the advantages of this approach widely available

to codes that have a high threshold to non-trivial algorithmic

changes.

ACKNOWLEDGMENTS

This work was supported in part by the National Science

Foundation under Grant No. 1740250, and the Exascale Com-

puting Project (17-SC-20-SC), a collaborative effort of the

U.S. Department of Energy Office of Science and the National

Nuclear Security Administration, under UT Battelle subaward

4000153505.

REFERENCES

[1] G. Golub, J. Ortega, Scientific Computing, an introduction with Parallel
Computing, Academic Press, 1993.

[2] W. Hackbusch, Multigrid Methods and Applications, Springer Series in
Computational Mathematics Vol. 4, Springer-Verlag, Berlin, 1985.

[3] U. Trottenberg, C. W. Oosterlee, A. Schüller, Multigrid, Academic Press,
London NW1 7BY, UK, 2001.

[4] L. N. Trefethen, D. Bau, Numerical Linear Algebra, SIAM, Philadelphia,
PA, 1997.

[5] P. Ghysels, W. Vanroose, Modeling the performance of geometric multi-
grid stencils on multicore computer architectures, SIAM Journal on Sci-
entific Computing 37 (2) (2015) C194–C216. doi:10.1137/130935781.

[6] S. Williams, D. D. Kalamkar, A. Singh, A. M. Deshpande, B. Van
Straalen, M. Smelyanskiy, A. Almgren, P. Dubey, J. Shalf, L. Oliker,
Optimization of geometric multigrid for emerging multi- and manycore
processors, in: SC ’12: Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis, 2012,
pp. 1–11. doi:10.1109/SC.2012.85.

[7] P. Basu, A. Venkat, M. Hall, S. Williams, B. Van Straalen,
L. Oliker, Compiler generation and autotuning of communication-
avoiding operators for geometric multigrid, in: 20th Annual International
Conference on High Performance Computing, 2013, pp. 452–461.
doi:10.1109/HiPC.2013.6799131.

[8] S. L. Graham, M. Snir, C. A. Patterson, Getting up to speed, the future
of supercomputing, The National Academies Press.

[9] M. Bauer, S. Treichler, E. Slaughter, A. Aiken, Legion: Expressing
Locality and Independence with Logical Regions, in: International
Conference for High Performance Computing, Networking, Storage and
Analysis, SC, 2012. doi:10.1109/SC.2012.71.

[10] J. Bachan, S. B. Baden, S. Hofmeyr, M. Jacquelin, A. Kamil,
D. Bonachea, P. H. Hargrove, H. Ahmed, UPC++: A high-performance
communication framework for asynchronous computation, in: 2019
IEEE International Parallel and Distributed Processing Symposium
(IPDPS), 2019, pp. 963–973. doi:10.1109/IPDPS.2019.00104.

[11] C. Augonnet, S. Thibault, R. Namyst, P. Wacrenier, StarPU: A unified
platform for task scheduling on heterogeneous multicore architectures,
Concurrency Computat. Pract. Exper. 23 (2011) 187–198.

[12] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Herault, J. J.
Dongarra, PaRSEC: Exploiting Heterogeneity to Enhance Scalability,
Computing in Science Engineering 15 (6) (2013) 36–45.

[13] L. V. Kale, S. Krishnan, CHARM++: A portable concurrent object
oriented system based on C++, in: Proceedings of the Eighth Annual
Conference on Object-Oriented Programming Systems, Languages, and
Applications, OOPSLA ’93, Association for Computing Machinery,
New York, NY, USA, 1993, p. 91–108. doi:10.1145/165854.165874.

[14] T. Zhao, S. Williams, M. Hall, H. Johansen, Delivering performance-
portable stencil computations on cpus and gpus using bricks, in:
2018 IEEE/ACM International Workshop on Performance, Porta-
bility and Productivity in HPC (P3HPC), 2018, pp. 59–70.
doi:10.1109/P3HPC.2018.00009.

[15] Y. Zhang, F. Mueller, Auto-generation and auto-tuning of 3D stencil
codes on GPU clusters, in: Proceedings of the Tenth International Sym-
posium on Code Generation and Optimization, CGO ’12, Association
for Computing Machinery, New York, NY, USA, 2012, p. 155–164.
doi:10.1145/2259016.2259037.

[16] J. Demmel, M. Hoemmen, M. Mohiyuddin, K. Yelick, Avoiding com-
munication in sparse matrix computations, in: 2008 IEEE International
Symposium on Parallel and Distributed Processing, 2008, pp. 1–12.
doi:10.1109/IPDPS.2008.4536305.

[17] M. Hoemmen, Communication-avoiding Krylov subspace methods,
Ph.D. thesis, USA, aAI3413388 (2010).

[18] E. Solomonik, J. Demmel, Communication-optimal parallel 2.5d matrix
multiplication and lu factorization algorithms, in: E. Jeannot, R. Namyst,
J. Roman (Eds.), Euro-Par 2011 Parallel Processing, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2011, pp. 90–109.

[19] E. Georganas, J. Gonzalez-Dominguez, E. Solomonik, Y. Zheng,
J. Tourino, K. Yelick, Communication avoiding and overlapping for
numerical linear algebra, in: SC ’12: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis, 2012, pp. 1–11. doi:10.1109/SC.2012.32.

[20] E. Agullo, L. Giraud, A. Guermouche, S. Nakov, J. Roman, Pipelining
the CG Solver Over a Runtime System, in: GPU Technology Conference,
NVIIDA, San Jose, United States, 2013.
URL https://hal.inria.fr/hal-00934948

[21] I. Yamazaki, M. Hoemmen, P. Luszczek, J. Dongarra, Improving per-
formance of gmres by reducing communication and pipelining global
collectives, in: 2017 IEEE International Parallel and Distributed Pro-
cessing Symposium Workshops (IPDPSW), 2017, pp. 1118–1127.

[22] K. Datta, Auto-tuning stencil codes for cache-based multicore platforms,
Ph.D. thesis, USA (2009).

[23] A. Danalis, G. Bosilca, A. Bouteiller, T. Herault, J. Dongarra, Ptg:
An abstraction for unhindered parallelism, in: 2014 Fourth Inter-
national Workshop on Domain-Specific Languages and High-Level
Frameworks for High Performance Computing, 2014, pp. 21–30.
doi:10.1109/WOLFHPC.2014.8.

728

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 14,2023 at 15:31:36 UTC from IEEE Xplore. Restrictions apply.

[24] R. Hoque, T. Herault, G. Bosilca, J. Dongarra, Dynamic Task Discovery
in PaRSEC: A Data-flow Task-based Runtime, in: Proceedings of the 8th
Workshop on Latest Advances in Scalable Algorithms for Large-Scale
Systems, ScalA ’17, ACM, New York, NY, USA, pp. 6:1–6:8.

[25] J. Demmel, M. F. Hoemmen, M. Mohiyuddin, K. A. Yelick, Avoiding
communication in computing Krylov subspaces, Tech. Rep. UCB/EECS-
2007-123, EECS Department, University of California, Berkeley.

[26] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschel-
man, L. Dalcin, A. Dener, V. Eijkhout, W. D. Gropp, D. Karpeyev,
D. Kaushik, M. G. Knepley, D. A. May, L. C. McInnes, R. T. Mills,
T. Munson, K. Rupp, P. Sanan, B. F. Smith, S. Zampini, H. Zhang,
H. Zhang, PETSc Web page (2019).

[27] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschel-
man, L. Dalcin, A. Dener, V. Eijkhout, W. D. Gropp, D. Karpeyev,
D. Kaushik, M. G. Knepley, D. A. May, L. C. McInnes, R. T. Mills,
T. Munson, K. Rupp, P. Sanan, B. F. Smith, S. Zampini, H. Zhang,
H. Zhang, PETSc users manual, Tech. Rep. ANL-95/11 - Revision 3.12,
Argonne National Laboratory (2019).
URL https://www.mcs.anl.gov/petsc

[28] S. Balay, W. D. Gropp, L. C. McInnes, B. F. Smith, Efficient man-
agement of parallelism in object oriented numerical software libraries,
in: E. Arge, A. M. Bruaset, H. P. Langtangen (Eds.), Modern Software
Tools in Scientific Computing, Birkhäuser Press, 1997, pp. 163–202.

[29] S. Moustafa, W. Kirschenmann, F. Dupros, H. Aochi, Task-based
programming on emerging parallel architectures for finite-differences
seismic numerical kernel, in: M. Aldinucci, L. Padovani, M. Torquati
(Eds.), Euro-Par 2018: Parallel Processing, Springer International Pub-
lishing, Cham, 2018, pp. 764–777.

[30] D. Turner, A. Oline, X. Chen, T. Benjegerdes, Integrating new capabili-
ties into netpipe, in: J. Dongarra, D. Laforenza, S. Orlando (Eds.), Recent
Advances in Parallel Virtual Machine and Message Passing Interface,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2003, pp. 37–44.

[31] J. D. McCalpin, STREAM: Sustainable memory bandwidth in
high performance computers, Tech. rep., University of Virginia,
Charlottesville, Virginia, a continually updated technical report.
http://www.cs.virginia.edu/stream/ (1991-2007).
URL http://www.cs.virginia.edu/stream/

[32] S. Williams, A. Watterman, D. Patterson, Roofline: An Insightful Visual
Performance Model for Floating-Point Programs and Multicore Archi-
tectures, Communications of the ACM.

[33] S. S. Vazhkudai, B. R. de Supinski, A. S. Bland, A. Geist, J. Sexton,
J. Kahle, C. J. Zimmer, S. Atchley, S. Oral, D. E. Maxwell, et al., The
design, deployment, and evaluation of the coral pre-exascale systems,
in: Proceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis, SC ’18, IEEE Press.

729

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 14,2023 at 15:31:36 UTC from IEEE Xplore. Restrictions apply.

