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Abstract— As the scale of high-performance computing (HPC)
systems continues to grow, increasing levels of parallelism must
be implored to achieve optimal performance. Recently, the
processors support wide vector extensions, vectorization becomes
much more important to exploit the potential peak performance
of target architecture. Novel processor architectures, such as
the Armv8-A architecture, introduce Scalable Vector Extension
(SVE) - an optional separate architectural extension with a new
set of A64 instruction encodings, which enables even greater
parallelisms.

In this paper, we analyze the usage and performance of the
SVE instructions in Arm SVE vector Instruction Set Architec-
ture (ISA); and utilize those instructions to improve the memcpy
and various local reduction operations. Furthermore, we propose
new strategies to improve the performance of MPI operations
including datatype packing/unpacking and MPI reduction. With
these optimizations, we not only provide a higher-parallelism for
a single node, but also achieve a more efficient communication
scheme of message exchanging. The resulting efforts have been
implemented in the context of OPEN MPI, providing efficient and
scalable capabilities of SVE usage and extending the possible
implementations of SVE to a more extensive range of program-
ming and execution paradigms. The evaluation of the resulting
software stack under different scenarios with both simulator and
Fujitsu’s A64FX processor demonstrates that the solution is at
the same time generic and efficient.

Index Terms—SVE, Vector Length Agnostic, ARMIE, datatype
pack and unpack, non-contiguous accesses, local reduction

I. INTRODUCTION

The need to satisfy the scientific computing community’s

increasing computational demands lead to larger HPC sys-

tems with more complex architectures, which provides more

opportunities to enrich multiple levels of parallelism. One

of the opportunities is to exploit data-level parallelism by

code vectorization [1], and this causes the HPC systems to

equip with vector processors. Comparing to scalar processors,

vector processors support Single Instruction Multiple Data [2]

(SIMD) Instruction Set Architectures and operate on one-

dimensional arrays (vectors) rather than single elements. There

are efforts to keep improving the vector processors by in-

creasing the vector length and adding new vector instructions.

Intel Knights Landing [3] introduced the Advanced Vector

Extensions instruction set, AVX-512, which provides 512-bits-

wide vector instructions and more vector registers; and Arm

announced new Armv8 architecture embraced SVE together

with extension instruction sets.
SVE is a vector extension for AArch64 execution mode

for the A64 instruction set of the Armv8 architecture [4], [5].

Unlike other SIMD architectures, SVE does not define the size

of the vector registers, instead it provides a range of different

values which permit vector code to adapt automatically to the

current vector length at runtime with the feature of Vector
Length Agnostic (VLA) programming [6], [7]. Vector length

constrains in the range from a minimum of 128 bits up to a

maximum of 2048 bits in increments of 128 bits.
SVE not only takes advantage of using long vectors but also

enables powerful high vectorization features that can achieve

significant speedup. Those features include but not limited to:

1) using rich addressing mode which enables non-linear data

access that can deal with non-contiguous data;

2) providing a valuable set of horizontal reduction oper-

ations which applies to more types of reducible loop

carried dependencies including both logical, integer and

floating-point reductions;

3) and permitting vectorization of loops with more complex

loop carried dependencies and more complex control

flow.

Those extensions largely expand the usages of Arm archi-

tecture and increase opportunities for vector processing; as

a result, HPC platforms and software can benefit significantly

from SVE features.
Message Passing Interface (MPI) [8] is a popular and

efficient parallel programming model for distributed memory

systems widely used in scientific applications. As many scien-

tific applications operate on multi-dimensional data, manipu-

lating these data becomes complicated because the underlying

memory layout is not contiguous. The MPI standard proposes

a rich set of interfaces to define regular and irregular memory

patterns, the so called Derived Datatypes (DDT).
DDT provides excellent functionality and flexibility by

allowing the programmer to create arbitrary (contiguous and

non-contiguous) structures from the MPI primitive datatypes.

It is also useful for constructing messages that contain values

with different datatypes and sending non-contiguous data (sub-

matrix and matrix with irregular shape [9]) which eliminates

the overhead of sending and receiving multiple small messages
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and improves bandwidth utilization. Multiple small messages

can be constructed into a derived datatype and sent/received

as a single large message.
Once constructed and committed, an MPI datatype can be

used as an argument for any point-to-point, collective, I/O,

and one-sided functions. With DDT, MPI datatype engine

automatically packs and unpacks data based on the datatype;

which is convenient for the user since it hides the low-level

details. However, the cost of packing and unpacking in the

datatype engine is high; to reduce this cost, MPI implemen-

tations need to design more powerful and efficient pack and

unpack strategies. We contribute our efforts to investigate and

improve the performance of datatype pack and unpack.
Computation-oriented collective operations like

MPI Reduce perform reductions on data along with the

communications performed by collectives. These collectives

typically require intensive CPU compute resources, which

force the computation to become the bottleneck and limit

its performance. However, with the presence of advanced

architecture technologies introduced with wide vector

extension and specialized arithmetic operations, it calls for

MPI libraries to provide state-of-the-art design for advanced

vector extension (SVE and AVX [3], [10]) based versions.

We tackle the above challenges and provide designs and

implementations for reduction operations, which are most

commonly used by computation intensive collectives -

MPI Reduce, MPI Reduce local, MPI ALLreduce. We

propose extensions to multiple MPI reduction methods to

fully take advantage of the Arm SVE capabilities such as

vector product to efficiently perform these operations.
This paper makes the following contributions:

1) presenting detailed analysis of how Arm SVE vector

Instruction Set Architecture (ISA) can be used to optimize

memory copy for both contiguous memory regions and

non-contiguous memory regions;

2) analyzing SVE hardware arithmetic instructions to speed

up a variety types of reduction operations;

3) exploring the usage of Arm SVE vector rich mem-

ory access pattern to increase the performance of MPI

datatype pack and unpack operations. We describe how

different optimizations such as using multiple vector
load and store, predicated non-contiguous Gather Load
and Scatter Store can be used. And we implemented the

SVE-enabled optimizations in OPEN MPI using related

SVE intrinsics.

4) optimizing MPI local reduction operations using SVE

arithmetics which highly increased the performance;

5) and performing experiments using our SVE intrinsics

based pack/unpack and reduction operations in the scope

of OPEN MPI with Fujitsu’s A64FX processor, which

is the first processor of the Armv8-A SVE architecture.

Experiment results demonstrate the efficiency of SVE

instructions and our implementation. Further more, pro-

vides useful insight and guideline on how Arm SVE

vector ISA can be used in high performance computing

platforms and software.

The rest of this paper is organized as follows. Section II

presents related researches taking advantage of Arm SVE

for specific mathematics applications, together with a survey

about optimizations of MPI DDT pack and unpack, and

mpi local reduction by novel hardware. Section III provides

details about SVE features and related tools that can simulate

SVE instructions and evaluate the performance. Section IV

describes the implementation details of our generic memory

copy and reduction methods using Arm SVE intrinsics and

instructions. Section V shows our optimized implementation

details in the scope of OPEN MPI takes advantage of Arm

SVE intrinsics and instructions. Section VI describes the per-

formance difference between OPEN MPI and SVE-optimized

OPEN MPI and provides a distinct insights on the how SVE

can benefit OPEN MPI.

II. RELATED WORK

In this section, we survey related work on techniques

taking advantage of advanced hardware or architectures. Pet-

rogalli [11] gives instructions on how SVE can be used

to replace and optimize some commonly used general C

functions. In a later work [12], it explores the usage of

SVE vector multiple instruction to optimize matrix multi-

plication in machine learning such as GEMM algorithm. In

another work [13], they leverage the characteristics of SVE

to implement and optimize stencil computations, ubiquitous

in scientific computing, which shows that SVE enables easy

deployment of optimizations like loop unrolling, loop fusion,

load trading or data reuse. However, all those work focus on

using SVE for a specific application. In our work we study

SVE enabled features in a more comprehensive way, and also

provides detailed analysis about the efficiency achievements

of using SVE instructions. We are focusing on networking

runtime and not generic compute bound applications.

There have been several efforts to use similar techniques to

improve MPI communication by optimizing pack and unpack

procedure. Wu et al. [14] proposed GPU datatype engine

which offloads the pack and unpack work to GPU in order

to take advantage of GPU’s parallel capability to provide

high efficiency in-GPU pack and unpack. This work [15]

presented a new zero-copy scheme to efficiently implement

datatype communication over InfiniBand scatter gather work

to optimize non-contiguous point to point communication.

Mellanox’s InfiniBand [16] explored the use of hardware

scatter gather capabilities to eliminate CPU memory copies

selectively, and offload handling data scatter and gather to the

supported Host Channel Adapter. This capability is used to

optimize small data all-to-all collective. Dosanjh et al. [17]

took advantage of using AVX vector operation for MPI mes-

sage matching to accelerate matches which demonstrated the

efficiency of long vectors. We expand our investigation of SVE

capabilities to optimize MPI from different aspects directly at

processor instruction level which is more straightforward and

without the need for external or extra hardware compared to

previous work [14], [16].

Additionally, different techniques and efforts have been
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studied to optimize MPI reduction operations. Jesper [18]

proposed a simple implementation of MPI library internal

functionality that enables MPI reduction operations to be

performed more efficiently with increasing sparsity of the

input vectors. Also [19], [20] provided design and imple-

mentation of computed-oriented collective using GPU accel-

erators. Luo [20] offloaded the reduction operations to the

GPU asynchronously by using multiple CUDA streams which

allowed the overlap of communications and reduction oper-

ations. Michael [21] presented a pipeline algorithm for MPI

Reduce that used a Run Length Encoding scheme to improve

the global reduction of sparse floating-point data. Compared

to those work, our SVE arithmetic reduction optimization is

more general which has no limitation of data representation

and is using CPU resources only.

III. ARM SVE OVERVIEW

Remarkable features of SVE includes: (1) Support for

scalable vector and predicate registers, which together deliver a

set of instructions that operate on wide vectors and predicates,

and extend efficient vectorization to even broader scope with

more control operation for active elements only. (2) VLA

allows the same SVE code to run on platforms using different

vector lengths with no need to modify or recompile the code.

This feature provides high portability of software in the space

of various combinations of hardware and software stacks to

embrace massive parallelism as well as a deeper and more

complex component hierarchy to continue the growth in com-

pute capabilities. (3) Gather load and scatter store strengthen

the capabilities to selectively transfer non-contiguous data,

resulting in better performing pack and unpack algorithms

which can dramatically reduce the number of memory copies

for non-contiguous data.

A. Arm Intrinsic Instructions
Intrinsics are C or C++ pseudo-function calls that the

compiler replaces with the appropriate SIMD instructions. The

Arm C language extensions (ACLE) [22] for SVE provide

a set of types, accessors and intrinsic functions that a C

and C++ compiler can directly convert into SVE assembly.

It provides function-to-instruction mapping of SVE vectors

and predicates, and function interfaces for relevant SVE

vectorization instructions. It enables high level language user

to explicitly use the datatypes and operations available in the

Arm SVE ISA. Our SVE enabled optimized implementation

is written in ACLE.

B. Arm Instruction Emulator and Gem5
SVE vector instruction extension offers many opportunities

to optimize memory access and compute workloads, but with

the availability of SVE-enabled hardware is not publicly

available, we have rely on simulation techniques in order to

evaluate our implementations.
ARMIE [23] is a tool that converts instructions not sup-

ported by hardware to native Armv8-A instructions, such as

those from the SVE instruction set. ARMIE enables develop-

ers to run SVE executable on existing Armv8-A hardware

paired with dynamic binary instrumentation, enabling full

application tracing without the overhead found in simulators.

ARMIE includes an emulation client for SVE and optional

instrumentation clients (e.g., Instruction count client emulated

SVE, Opcodes Count), which communicate between each

other using the emulator API. Details about ARMIE’s capa-

bility are not in the scope of this paper, but we still want

to mention the feature of collecting dynamic characteristics

and metrics from the executing application, such as memory

traces and instruction counts, allowing a more in-depth and

more insightful analysis. ARMIE is not capable of producing

timing information and incurs an emulation and binary in-

strumentation overhead on the running application. However,

we can use instruction counts to measure how many actual

instructions are executed during the execution of applications

which includes the total number of instructions and the number

of emulated SVE instructions. This feature will be a key

method to evaluate the performance of our implementation

in this paper.

Gem5 [24], [25] simulator is an open source modular plat-

form for computer-system architecture research, encompassing

system-level architecture as well as processor microarchitec-

ture. Gem5 has multiple execution modes, such as an atomic

mode in which an instruction level simulation is performed,

and an O3 mode in which an accurate execution cycle number

can be estimated by simulating an out-of-order pipeline. In

addition, Gem5 supports many existing processor architectures

such as Alpha, Arm, SPARC and x86. For the interests of this

paper, Gem5 can model up to 64 heterogeneous cores of an

Arm platform, and Arm implementation supports 32 or 64-bit

kernels and applications. It provides support for modeling Arm

SVE instructions which decouple SVE ISA semantics from

its CPU models, enabling effective support of SVE instruction

and providing cycle-accurate counts for those instructions.

Gem5 has a full system mode and a system emulation mode.

Under system emulation mode, memory management and

system calls are executed as services in Gem5. Gem5 provides

statistical information of accurate cycle counts which is not

available using ARMIE. In our work, we investigate using

both methods to get instruction count and cycle count.

IV. OPEN MPI OPERATION WITH SVE

A. SVE rich memory access addressing for pack and unpack
SVE vector load and store instructions transfer data in

memory to or from elements of one or more vector or predicate

transfer registers. It provides several types of instruction that

can be used to optimize memory operations as:

1) Predicated single vector contiguous element accesses load

and store (ld1 and st1).

2) Predicated multiple vector contiguous structure load and

store (ldNx and stNx, N = 2,3,4).

3) Predicated non-contiguous element accesses Gather Load

and Scatter Store.

1) Contiguous memory layout
Memory copy is the most widely used memory operation.

C standard library provides function as memcpy, and with the

help of modern compiler it is converted to assembly code
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which represented as a loop of load and store instructions using

vector registers. Existing architecture using vectors which can

copy 64 or 128 bits depending on vector length related to

specific architecture. But with Arm SVE the maximum vector

length we can apply is 2048 bits. SVE vector load and

store work efficiently when copying large contiguous data

or non-contiguous data with large block length. SVE also

provides more paralleled memory copy operation by which

single instruction using multiple vector for load and store, such

as

svint8x4 t svld4(svbool t pg, const int8 t ∗ base)
which interprets a single instruction uses four vectors loading

data simultaneously.

2) Non-Contiguous memory layout

For non-contiguous datatype layouts as show in Figure 1,

vector type Fig 1(a) is the most regular and certainly the most

widely used MPI datatype constructor. Vector allows replica-

tion of a datatype into locations that consist of equally spaced

blocks, describing the data layout by using block-length, stride

and count. Block-length refers to the number of primitive

datatypes that a block contains, stride refers to the number

of primitive datatypes between blocks, and count defines the

number of blocks needs to be processed. A distinctive flavor

of vector datatype, frequently used in computational sciences

and machine learning, access a single column of matrix as

presented in Fig 1(c) and can be represented by a specialized

vector type with block-length equal one.

Datatypes other than vector exposes less and less regularity

and neither the size of each block nor the displacements be-

tween successive blocks are constant. In order of growing com-

plexity, MPI supports INDEXED BLOCK (constant block-

length different displacements), INDEXED (different block-

lengths and different displacements), and finally STRUCT

(different block-lengths, different displacements and different

composing datatypes). Such datatypes Fig 1(b) cannot be

described in a concise format using only block-length and

stride.

Vector loads and stores of most processors can only ac-

cess elements stored in consecutive locations. Thus, for non-

contiguous data either issue loads and stores for each block

using one register, or possibly issue several scalar load and

store operations to load/store a vector register and then execute

in vector mode, the resulting vector code obtains low speedups,

or even slowdowns, with respect to its scalar counterpart.

However SVE introduces new subsets of instruction that

provides multiple addressing access mode to enable gather

load and scatter store for non-contiguous memory. There are

two kinds of addressing that have the same format with a

base component with a displacement component: vector plus
immediate and scalar plus vector. The base is the start point

of source data, and the displacement represents offsets of all

primitive data by a common offset described by an immediate

value from the base address in each element of the vector

register. In scalar plus vector addressing, it points to the

memory that is separated from common base register by the

offset in each element of the offsets vector with an option to

shift the offset according to the element size to be loaded.

In our case, we use scalar plus vector of offsets mode, with

a specified explanation as

svint32 t svld1 gather u32base offset s32(svbool t pg,

svuint32 t bases, int64 t offset)

is a gather load (ld1 gather) of signed 32-bit integer ( s32)

from a vector of unsigned 32-bit integer base addresses

( u32base) plus an offset in bytes ( offset). We develop an

optimized pack and unpack algorithm specialized for a vector-

like datatype. Gather load and scatter store processes multiple

non-contiguous small blocks simultaneously instead of using

a for loop copy block by block. Gather load and scatter store

is ideal for pack and unpack of derived regular vector type,

we generate the offsets vector once based on block length and

gaps then it can be repeatedly used. We can visualize that

for less regular memory it may have a repeating pattern of

memory layout, thus if we can generate offset vectors for the

repeat pattern then we can apply multiple gather loads and

scatter stores for each repetition and apply to all repetitions.

For column access pattern, SVE has a special instruction

to generate offsets vector for this particular need as:

svint32 t svindex s32(int32 t base, int32 t step)

with pattern {base, base + step, base + step*2, ...}. With

gather load and scatter store, users can copy a whole vector of

data which is much more efficient compared to cherry picking

a single element per vector. To summarize, gather load and

scatter store can efficiently pack and unpack non-contiguous

data by generating reasonable offsets vector or vectors. Due

to the space constraints, we focus our efforts on regular vector

type in the rest of this paper.

B. Reduction operation
A reduction is a typical operation found in many scientific

applications. Those applications have large amounts of data

level parallelism and should be able to benefit from SIMD

support for reduction operation. Traditional reduction opera-

tion performs element by element of the input buffer which

executes as a sequential operation, or it is probably could be

vectorized under a particular circumstance. Sometimes it may

suffer from dependencies across multiple loop iterations. SVE

reduction instructions perform arithmetic horizontally across

active elements of a single source vector and deliver a scalar

result. SVE provides arithmetic reduction operation for integer

and float-pointing, also supports logical reduction operations

for integer type, an example format would be

svint32 t svmul[ s32] x(svbool t pg, svint32 t op1,

svint32 t op2)

this function produces the product results of two vectors. This

gives the chance to create Arm intrinsic reduction in MPI,

which will highly increase the parallelization and performance
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Fig. 1: Memory layout of non-contiguous datatype

TABLE I: Parameters and notations.

Symbol Description

ARRAYSIZE Number of elements for copying
Z0-Z31 Scalable vector registers
P1-P15 Predicate registers

Step 4∗Vector length in bytes
VL Vector Length

of MPI local reduction. Additionally, SVE can performs

scatter reduction operation with the accomplished support of

predicate vector register which behaves in a vectorized manner.

This profoundly expands the limitation of consecutive memory

layout for reduction operation to non-contiguous at the same

time generic and efficient.

C. Evaluation of a generic ACLE memory copy

Listing 1: Memcpy and ACLE code with Assembly

1 / * Region o f i n t e r e s t * /
2 memcpy(& d s t , &s r c , ARRAYSIZE) ;
3 400780: ld1b z0.b, p0/z, [x10, x8]
4 400784: st1b z0.b, p0, [x11, x8]
5 400788: a d d v l x8 , x8 , #1
6 40078 c : w h i l e l o p0 . b , x8 , x9
7 400790: b . mi 400780<main+0x54>

1 / * Region o f i n t e r e s t : copy w i t h 4
v e c t o r s s i m u l t a n e o u s * /

2 f o r ( i =0 ; i<ARRAYSIZE ; i += s t e p ) {
3 s v u i n t 8 x 4 t v s r c = s v l d 4 ( Pg , &s r c [ i ] ) ;
4 s v s t 4 ( Pg , &d s t [ i ] , v s r c ) ;}
5 400708: ld4b z0.b-z3.b, p0/z, [x9,x10]
6 40070 c : st4b z0.b-z3.b, p0, [x8,x10]
7 400710: add x10 , x10 , x11
8 400714: l s r x12 , x10 , #30
9 400718: cbz x12 , 400708 <main+0x1c>

To understand the SVE instructions performance and extend

the usage to OPEN MPI implementation. We implemented

several micro benchmarks using ACLE to compare with

extracted related kernel code from OPEN MPI. Experiments

are conducted to demonstrate the efficiency of customized

ACLE memory copy algorithms for both contiguous memory

and non-contiguous vector type. Furthermore, we evaluate

the effectiveness of SVE vector-based reduction operations.

All experiments are conducted under the same experimen-

tal setting. We present the average and standard deviation

of 30 times(which is too small to be noticeable). For the

configuration, we use: Arm HPC compiler 19.2 with gcc
8.2.0, compiled with -O3 and -march=armv8-a+sve option by

which will trigger automatic vectorization that targets SVE

VLA techniques. It supports auto-vectorization for SVE as

well as in-line assembly. For SVE instruction simulator and

instruction clients, we use ARMIE version 19.1. For Gem5

we use Arm’s internal version (corresponding upstream is

gem5/sve/beta1) which has SVE enabled support. Further-

more, under -O3 mode, the memory access instruction is

divided into the processing of generating the cache request

and the processing after receiving the data from the cache.

This means that the Gem5 simulated results represent the

complete data fetching operation instead of just issuing the

cache request. Table 1 summarizes some of the notations

we will employ to describe the algorithms and performance

analysis. Equation 1 describes how we calculate the instruction

count for all experiments, in order to evaluate and strengthen

the number of instructions executed of the target code section,

we need to eliminate the baseline - the number of instructions

executed besides the target code (e.g. initialize and finalize).

The baseline is calculated by running the same test codes but

no data being processed.

1) Contiguous memory

For contiguous large data buffer, our ACLE customized

memory copy implementation adapts two features of SVE.

It not only adapts the usage of using long scalable vector

for load and store which can copy more data compared to

normal data register, but also uses four SVE vectors instead

of single vector which highly reduces the number of control

instructions. List 1 shows the code snippet comparison of

memcpy and our ACLE optimized memory copy algorithm

together with related assemble code. We can see that for

memcpy method it is using z0 for load and store. For ACLE

method it uses z0 ˜z3 vectors for load and store. Those two

methods have the same total amount of assembly code, and

ACLE method copy four times of the data more than memcpy

which highly decreases the number of total instructions. Also

it needs less control and branching instructions, which will be

reflected to performance gain.

Instruction count = (Actual - Base) (1)

Actual: when dealing with number of elements > 0
Base: when dealing with number of elements = 0
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Fig. 2: Instruction counts of using MEMCPY and ACLE

customized memory copy for 1MB contiguous buffer

Figure 2 shows the instruction count results by ARMIE.

Experiments are conducted with different vector length varies

from 128 to 2048 bits for both memcpy and ACLE implemen-

tation copying 1MB data. We can see that for both cases the

instruction count shows a linear decrease when VL increases,

which demonstrate the efficiency of Arm SVE long vector.

Also the total number of instructions executed by memcpy is

400% of ACLE, which shows a consistent behavior as the

assembly code and illustrates using multiples vectors for load

and store will highly decrease the number of instructions. The

only exception is that when V L = 128 bits memcpy uses

advanced SIMD instead of SVE vector, which demonstrates

that by implicitly using ACLE intrinsic, it helps the compiler

to optimize code assembling better.

Figure 3 displays the comparison results of Gem5 accurately

simulated cycles of both methods. The size of the L1 cache is

set to 32 Kbytes with 4 ways and the size of the L2 cache is set

to 2 Mbytes with 16 ways. One load and one store operation

are available in a cycle. Continuous load and store instructions

access to the L1 cache by the vector length in a cycle. For both

methods, the configuration uses the same number of physical

registers. Copying the same amount of data, for both cases,

it needs to create equal amounts of load and store requests.

But for our ACLE customized method it largely reduced the

number of control and branching instructions, which results in

a performance gain of 5% as shown in the figure, when V L =
128 ACLE is 25% faster than memcpy which strengthens that

this SVE instruction is more efficient than general instruction.

2) Non-Contiguous memory

The support of SVE instruction-level gather load and scatter

store addressing capabilities provides a mechanism for defin-

ing new memory operation for non-contiguous memory (e.g.

for sparse linear algebra operations), which can potentially

deal with multiple small gapped memory pieces or indexed

elements simultaneously based on the length of SVE vector.

As such, multiple memory copies can be compressed as a

single copy. To understand the performance of gather and

scatter instruction relative to packing the data into a contiguous

buffer before sending, and unpacking to non-contiguous buffer

Fig. 3: Gem5 simulated time of MEMCPY and ACLE cus-

tomized memory copy for 1MB contiguous memory

upon receiving. Several experiments were performed. The

source data is non-contiguous but with a regular pattern as

vector type and destination is contiguous. The same as above,

we compare the performance of memcpy and ACLE code with

different VL.

Figure 4 shows the instruction counts when copy 1MB non-

contiguous data with blocklen = 1 and gap = 1. We can see

that memcpy implementation cannot take advantage of using

different vector length, and the amounts of instruction counts

of different VL stay the same which is limited by the fact

of copying block by block in the loop. However, the ACLE

code takes the optimization of using SVE long vector and

also gather load and scatter store feature which copies more

data per instruction. It shows the decrease of instruction counts

start from 10× to 100× as the VL increases compared to the

non-optimized implementation. Also it shows a linear decrease

with the vector length increases which proves that the load and

store instruction fully fills the vector register. Also for ACLE

method the ratio of SVE instruction compared to the total

instruction is higher than memcpy method.

Figure 5 illustrates the Gem5 simulated cycle results for

both methods when packing and unpacking non-contiguous

data. We can see that with the same configuration ACLE

gather and scatter implementation is faster than memcpy

under all VL settings and shows a speedup of 15% to 20%.

Compared to the decrease of instruction counts the simulated

cycles are not significant; it is because the SVE supported

implementation in Gem5 is not quite efficient. We believe

with actual hardware, the clock cycles of gather and scatter

instruction will be further reduced. Thus, we can see that by

using Arm SVE instruction, our optimized ACLE memory

copy algorithms provide good performance results for both

contiguous and non-contiguous memory layout.

D. Evaluation of SVE arithmetic reduction operations

This section compares the performance of maximum re-

duction operation with two implementations. For OPEN MPI

extracted kernel by C it performs element-wise maximum

operation across two input buffers. For each loop iteration,

it compares two elements. Our ACLE implementation we
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Fig. 4: Instruction counts of MEMCPY and ACLE customized

memory copy for non-contiguous memory

use SVE vector reduction instruction executing maximum

reduction operation on the same inputs but for each iteration

it deals with two vectors containing all the elements within

the vectors which represents a vector-wise operation.

Figure 6 shows the instruction counts by using ARMIE

for both cases with buffer size 4MB processing float point

data. We can see for both methods that with V L = 128 bits

the instruction count is 16× compared to V L = 2048 bits,

which demonstrates the efficiency of SVE long vector. Also by

implicitly using ACLE vector instruction the instruction count

is only 66% by using C with element-wise operation. With -

O3 option, vectorizing compiler that automatically translates

sequences of scalar operations, represented in the form of

loops, into vector instructions which substitute element-wise

operation to a vector version behavior. Our ACLE using intrin-

sics which gives us complete control of the low-level details

at the expense of productivity and portability. Figure 7 shows

the accurate execution cycles of the two experiments with

Gem5 results. We can see that with the same configuration

ACLE implementation is 30% faster. And it shows a linear

decrease with vector length increase. Similar investigations are

conducted for other reduction operations, including but not

limited to SUM, PROD, and logical operation BXOR which

show a similar performance benefit.

Fig. 5: Gem5 simulated time of MEMCPY and ACLE cus-

tomized memory copy for non-contiguous memory

Fig. 6: Instruction counts of C element wise and ACLE vector

wise maximum reduce operation for float point

V. DESIGN AND IMPLEMENTATION IN OPEN MPI

We implemented our SVE optimization work in a set of

components in OPEN MPI. While a full depiction of the

architecture and feature set of OPEN MPI is out of the scope

of this paper, some are relevant to our implementation effort.

OPEN MPI is based on a Modular Component Architec-

ture [26] which permits easily extending or substituting the

core subsystem with experimental features. As shown in fig-

ure 8, within this architecture, each of the major subsystems is

defined as an MCA framework, with a well-defined interface,

and multiple components implementing that framework can

coexist.

We added our SVE optimization work in two components

to OPEN MPI architecture. The SVE Pack Unpack related

component is in charge of using the high parallelization

ACLE memory copy service mentioned in section IV-C. The

improvement includes the optimization for pack and unpack

with both contiguous data using four SVE vectors to load

and store simultaneous, also taking advantage of gather load

and scatter store instructions for non-contiguous small block

data as revealed in algorithm 1. The Arm_SVE_OP component

implements several reduction operations (eg, max, sum, prod)

with Arm SVE vector reduction instructions; to be noted, this

component can be extended out the scope of local reduction to

general mathematics and logic operations. To the best of our

Fig. 7: Gem5 simulated time of C element wise and ACLE

vector wise maximum reduce operation for float point
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knowledge, our work is the first implementation to populate

Arm SVE with a MPI implementation.

OMPI with SVE

DDatatype

SVE 
Pack/Unpack

Datatype

SVE Copy

Coll

Reduction

Op

ARM_SVE_OP

…

…

RM

Applications

Fig. 8: SVE OPEN MPI architecture. The orange boxes

represent components with added SVE features. The dark blue

colored boxes are new modules or existing related modules.

Algorithm 1 SVE-based packing algorithm

svldN � Using N vectors to load

svstN � Using N vectors to store

svp � SVE predicate type

svcntb � vector length in bytes

blocklen � Number of bytes of a contiguous memory block

offset vector � Displacement is a vector, and each element

specifies a offset

1: procedure MEMCPYWITHMULTIPLEVECTORS(

DST, SRC, blocklen )

2: full vector copies = blocklen / (svcntb × N )

3: for k ← 0 to full vector copies do
4: svldN from SRC
5: svstN to DST
6: if ( remaining �= 0 ) then
7: Generate svp
8: Partially ld/st using svp

1: procedure SVEBASEDPACK( Count, blocklen,Extend )

� Example for Vector type 1(c)

2: if ( blocklen � svcntb ) then
3: for k ← 0 to Count do
4: MemcpyWithMultipleVec-

tors(blocklen,Src,Dst)

5: else
6: Blocks per vector = svcntb / blocklen
7: Generate offset vector
8: for k ← 0 to (Count / blocks per vector) do
9: Sve gather load using offset vector

10: Generate svp
11: Processing remaining blocks

VI. EVALUATION USING ARMIE

In this section, we discuss our experimental setup. We ex-

perimented on Arm HPC system which is a ThunderX2-based

server running at 2 GHz. Our work is based upon OPEN MPI

master branch, revision #75a539. Each experiment is repeated

30 times, and we present the average. For all experiment we

use a single node with one process, because our optimization

aims to improve the performance of local operation for all

processes either with pack unpack or reduction. We compile

and install OPEN MPI using Arm HPC compile 19.2 with

flag ”-march=armv8-a+sve”. Without SVE supported publicly

available hardware at the moment, we use ARMIE to evaluate

the performance of our optimization. Instead of presenting the

time to completion of the different benchmarks, we rely upon

instead on the number of instructions to be executed, a metric

that correctly highlights the performance implications.

We evaluate the performance of our packing and unpacking

SVE optimization methodology using MPI datatype bench-

mark in OPEN MPI code base. We present here the results

using non-contiguous memory layout vector type created by

MPI Type vector with blocklen = 1 and gap = 1, repetition

2048 to make sure the data can fullly fill SVE vector even

with V L = 2048 bits. For message size we use 1MB. In

order to eliminate the unnecessary communication between

processes and focus on our local pack and unpack optimization

we intentionally use one process to send to itself by MPI Send

and MPI Recv functions.

Figure 9 shows the comparison benchmark results using

OPEN MPI and SVE optimized OPEN MPI. Experiments

are conducted with V L = 256 to V L = 2048 bits. For

V L = 128 bits our implementation doesn’t use gather and

scatter feature due to limited benefit. We can see that for

OPEN MPI with different vector length it shows a constant

number of instruction count which cannot take advantage of

the long vector extension. For SVE optimized implementation

the instruction count is 16% less starting with V L = 256
bits, which dramatically decreases as vector length increases

because we optimized to use full vector for load and store.

With V L = 2048 bits it is almost 10× less.

For the reduction benchmark we use the MPI Reduce local

function call to perform the local reduction for all supported

MPI operations using an array of 4M bytes. Figure 10 shows

the result for the (MPI MAX) reduction, but we have observed

a similar outcome for all the other reduction operations. First,

it should be noted that the compiler, despite the optimization

flags provided, did not generate auto-vectorized code for

the default OPEN MPI, leading to a number of instruction

constant, directly related to the number of elements in the

input array. As our code explicitly uses the ACLE intrinsic

vector reduction instruction, the reduction in the number of

instructions is directly proportional to the vector lengths on

which the instructions operate. Thus, with V L = 128 bits it

reduces instruction count by 50%, when vector length reaches

2048 bits, the instruction count is reduced by a factor of

30, a clear indicator of a more concise generated code and

potentially of shorter execution time.

VII. EVALUATION ON SVE ENABLED HARDWARE A64FX

We evaluate our implementation on a cluster with Fujitsu’s

Arm SVE based processor A64FX, which is the first processor

of the Armv8-A SVE architecture and used for the post-K

computer targeting HPC and AI applications. Each processor
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Fig. 9: Instruction counts of OMPI and OMPI with SVE

datatype pack and unpack

hosts 4 Core Memory Group (CMG). A CMG consists of 13

cores, a L2 cache (8MiB, 16 way) and a memory controller.

The new processor supports enhanced SIMD and predicate

operations that including:

1) 512 bits SVE vectors for 512-bits wise load/store and

unaligned load crossing cache line.

2) Enhanced gather load and scatter store, enabling to return

up to two consecutive elements in a 128-byte aligned

block simultaneously.

3) Predicate operations by predicate register and predicate

execution unit.

The pack/unpack operations have been highlighted as a

major bottleneck for most applications using non-contiguous

datatypes. Our work focuses on the low-level pack/unpack

routines and any performance improvements on these routines

will automatically transfer to MPI non-contiguous communi-

cations.

Figure 11 presents the performance of pack and unpack

using gather/scatter feature with different vector length for

non-contiguous buffer. The green and yellow line indicates

the performance using vector length 256 bits and 512 bits

respectively with our gather and scatter strategy. Compared to

the blue line which is not using gather scatter feature. We can

see that that optimized algorithm is 2× faster which validates

the Gem5 simulated results.

Fig. 10: Instruction counts of OMPI and OMPI with SVE local

reduction of max operation

Fig. 11: MPI PACK/UNPACK using Gather/Scatter with dif-

ferent vector length on A64FX processor

Figure 12 compares the performance of our SVE based mpi

reduction operation. For the experiments, we flushed cache

in order to make sure we are not reusing cache for a fair

comparison. Our results demonstrate that with SVE-enabled

operation it is 4× faster than element-wise operation. We also

compare MPI operation performance together with memcpy

which indicates the peak memory bandwidth. For MPI reduc-

tion operation it needs 2loads+ 1store+ computation , for

memcpy it only needs 1load+1store. It shows that even with

computation included our SVE reduction operation achieves a

similar level of memory bandwidth as memcpy.

VIII. CONCLUSION

In this paper, we demonstrated the benefits of Arm SVE

vector operations. We addressed the performance advantages

of different features introduced by SVE with multiple vector

lengths compared to non-SVE implementations. Furthermore,

we extended the implementation of our investigation and

analysis to introduced an optimistic MPI optimization from

two aspects. For our first optimization, we adapted SVE rich

memory address feature to improve the pack and unpack

operations for regular MPI datatype. We use multiple vectors

to simultaneously load and stores large contiguous memory

Fig. 12: Comparison of MPI local reduction together with

MEMCPY for V L = 512 bits on A64FX processor
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or large memory blocks, and use gather load and scatter
store to copy multiple small blocks of non-contiguous memory

using a single SVE instruction. We use ARMIE to simulate

and calculate the actual number of instructions executed with

MPI DDT benchmark. We reduced the instruction counts from

16% to 10X respectively depending on the vector instruction

length. Also, we introduced a new reduction operation module

in OPEN MPI using Arm SVE intrinsics supporting different

kinds of MPI reduce operations for multiple MPI types. We

demonstrated the efficiency of our vector reduction operation

by a benchmark calling MPI Local reduce. From V L = 128 to

V L = 2048 bits we decreased the instruction count from 50%

to 30×. To further validate the performance improvements,

experiments are conducted using Fujitsu’s A64FX processor.

With our gather and scatter based pack and unpack the new

algorithm is 2× faster. For MPI Local reduce with V L = 512
SVE based reduction operation is 4× faster. Our analysis and

implementation of OPEN MPI optimization provides useful

insights and guidelines on how Arm SVE vector ISA can

be used in actual high performance computing platforms and

software to improve the efficiency of parallel runtimes and

applications.
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